Research Note - Toward a Causal Interpretation from Observational Data: A New Bayesian Networks Method for Structural Models with Latent Variables
نویسندگان
چکیده
B a fundamental attribute of a good theory is causality, the Information Systems (IS) literature has strived to infer causality from empirical data, typically seeking causal interpretations from longitudinal, experimental, and panel data that include time precedence. However, such data are not always obtainable and observational (cross-sectional, nonexperimental) data are often the only data available. To infer causality from observational data that are common in empirical IS research, this study develops a new data analysis method that integrates the Bayesian networks (BN) and structural equation modeling (SEM) literatures. Similar to SEM techniques (e.g., LISREL and PLS), the proposed Bayesian Networks for Latent Variables (BN-LV) method tests both the measurement model and the structural model. The method operates in two stages: First, it inductively identifies the most likely LVs from measurement items without prespecifying a measurement model. Second, it compares all the possible structural models among the identified LVs in an exploratory (automated) fashion and it discovers the most likely causal structure. By exploring the causal structural model that is not restricted to linear relationships, BN-LV contributes to the empirical IS literature by overcoming three SEM limitations (Lee et al. 1997)—lack of causality inference, restrictive model structure, and lack of nonlinearities. Moreover, BN-LV extends the BN literature by (1) overcoming the problem of latent variable identification using observed (raw) measurement items as the only inputs, and (2) enabling the use of ordinal and discrete (Likert-type) data, which are commonly used in empirical IS studies. The BN-LV method is first illustrated and tested with actual empirical data to demonstrate how it can help reconcile competing hypotheses in terms of the direction of causality in a structural model. Second, we conduct a comprehensive simulation study to demonstrate the effectiveness of BN-LV compared to existing techniques in the SEM and BN literatures. The advantages of BN-LV in terms of measurement model construction and structural model discovery are discussed.
منابع مشابه
Discovery of Causal Models that Contain Latent Variables Through Bayesian Scoring of Independence Constraints
Discovering causal structure from observational data in the presence of latent variables remains an active research area. Constraint-based causal discovery algorithms are relatively efficient at discovering such causal models from data using independence tests. Typically, however, they derive and output only one such model. In contrast, Bayesian methods can generate and probabilistically score ...
متن کاملExperimental Learning of Causal Models with Latent Variables
This article discusses graphical models that can handle latent variables without explicitly modeling them quantitatively. There exist several paradigms for such problem domains. Two of them are semi-Markovian causal models and maximal ancestral graphs. Applying these techniques to a problem domain consists of several steps, typically: structure learning from observational and experimental data,...
متن کاملLearning causal networks with latent variables from multivariate information in genomic data
Learning causal networks from large-scale genomic data remains challenging in absence of time series or controlled perturbation experiments. We report an information- theoretic method which learns a large class of causal or non-causal graphical models from purely observational data, while including the effects of unobserved latent variables, commonly found in many genomic datasets. Starting fro...
متن کاملBayesian estimation of causal direction in acyclic structural equation models with individual-specific confounder variables and non-Gaussian distributions
Several existing methods have been shown to consistently estimate causal direction assuming linear or some form of nonlinear relationship and no latent confounders. However, the estimation results could be distorted if either assumption is violated. We develop an approach to determining the possible causal direction between two observed variables when latent confounding variables are present. W...
متن کاملCausal Graphical Models with Latent Variables: Learning and Inference
Several paradigms exist for modeling causal graphical models for discrete variables that can handle latent variables without explicitly modeling them quantitatively. Applying them to a problem domain consists of different steps: structure learning, parameter learning and using them for probabilistic or causal inference. We discuss two well-known formalisms, namely semi-Markovian causal models a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Information Systems Research
دوره 21 شماره
صفحات -
تاریخ انتشار 2010